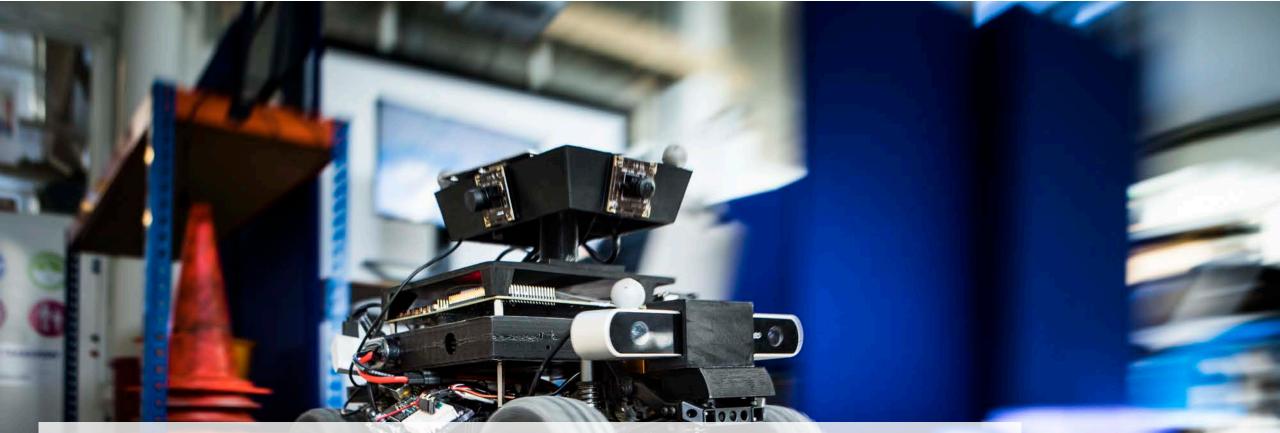


KTH Geoinformatics research based startup Gordian: Spatial Decision Support Systems for Transport Electrification


Gyözö Gidofalvi and Ehsan Saqib

ITRL Program Leader - Electrification / Urban Goods Distribution Associate Professor of Geoinformatics at Dept. of Urban Planning and Environment Co-founder and CEO of Gordian Logistics Optimization Systems

ITRL — INTEGRATED TRANSPORT RESEARCH LAB

ITRL in Numbers

- Established 2014
- More than 80 involved KTH researchers and students
- More than 120 involved project partners
- More than 80 research and innovation projects

Research Programs

ITRL – INTEGRATED TRANSPORT RESEARCH LAB

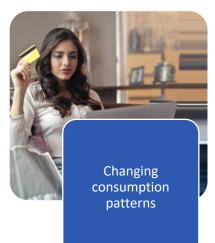
Labs

Automated Vehicle Control Tower (AVTCT)

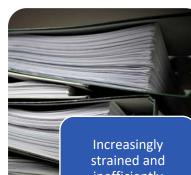
Region Stockholm TRAFIKVERKET

ERICSSON

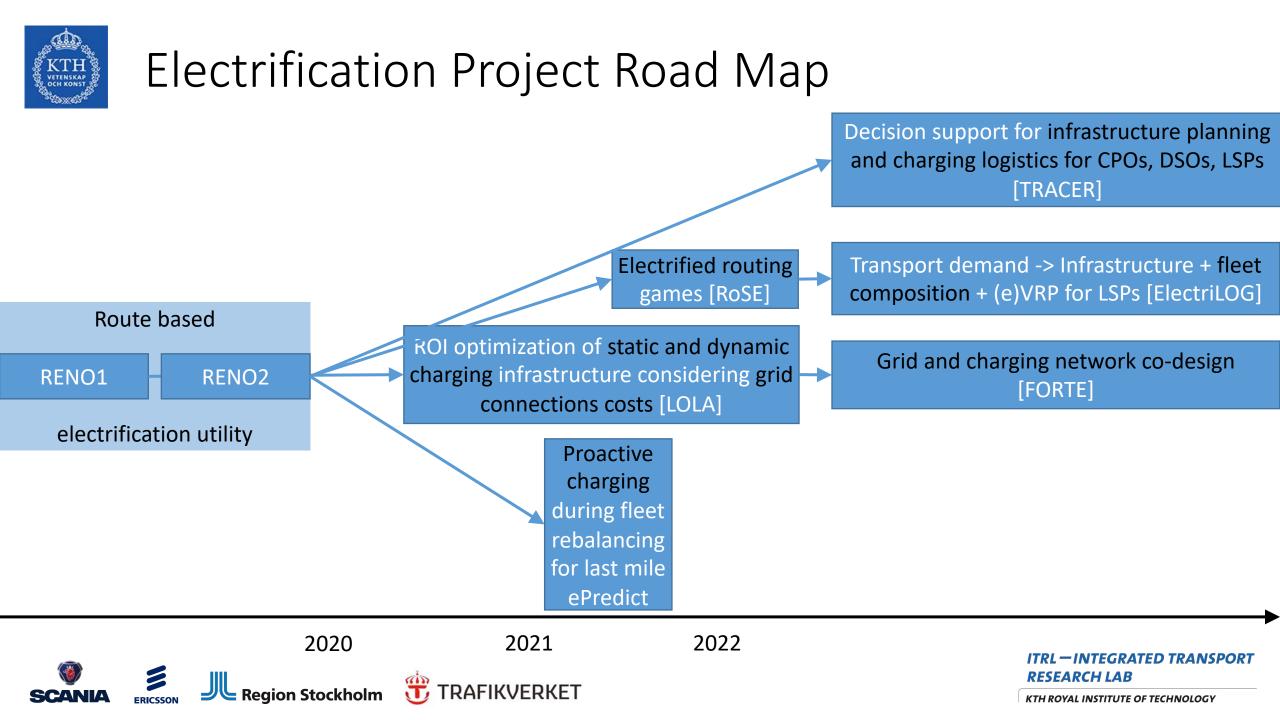
SCANIA


Research Concept Vehicles


Smart Mobility Lab




Challenge-Driven: Urban Goods Distribution


inefficiently used/planned delivery environment

Lack of comprehensive knowledge about deliveries, goods and material flows, and related travels

ITRL – INTEGRATED TRANSPORT RESEARCH LAB

TRACER: **TR**ansport Dem**A**nd **C**entric Decision Support for Electric ChaRging Infrastructure Planning and Operations

 Transport electrification problem: Fear of sunk assets and Misconceptions (M) Many moving parts and uncertainties M1: There is one static masterplan M2: "Lunch top-up charging" is

charging stations is

not solved.

Aim: To provide comprehensive data-driven decision support for charging infrastructure developments / investments and operations of- and on them.

- Research questions / needs:
 - 1. CPO, LSP, Trafikverket: At what pace, where, how many, and what type of charging infrastructure solutions (charging stations and/or electric roads) should be developed?
 - 2. CPO: How can charging be managed and optimized to maximize charger utilization and even out demand peaks and enable large-scale commercial transports? How effective and feasible are dynamic- or service-differentiated pricing, predictive day-ahead routing and charge slot booking / bidding, etc.? LSP: How robust is the charging infrastructure from a logistics point of view? How should (real-time or day-ahead) charging logistics be managed and optimized so that the transport costs (including wait and charging times) are **minimized**, and the chargers are best utilized?
- Previous research: RENO, LOLA, RoSE

ions (M)	Innovation Framework: Design Thinking
up charging" is ost-effective	
Calculating a "lunch charging" range extension is possible, but no one will build enough infrastructure to cater for the "lunch	Charging infrastructure planning decision support
charging" demand. The management and optimization of EV routing of a collection of large fleets including	Principle: Transport routes define the vehicles' inkind- demand, past and future charging opportunities and interactions at stations
their interactions at	

Rolls & contribution from project partners Ellevio (CPO / CPaaS) and PostNord (LSP), and Trafikverket

• Provide CPO, LSP, & transport agency domain knowledge:

- Validate / refine the needs
- Provide requirements for solutions
- Validate and shape assumptions and solutions
- Resources during 2023-2026:
- In-kind data:
 - CPO: anonymized charging data (capacity, energy prices, usage, waiting times)
- LSP: anonymized heavy, long-haul transport route / demand data
- In-kind time: 100 person-hours per partner for DTworkshops + reference group and result meetings

ITRL a Breeding Ground for Startups

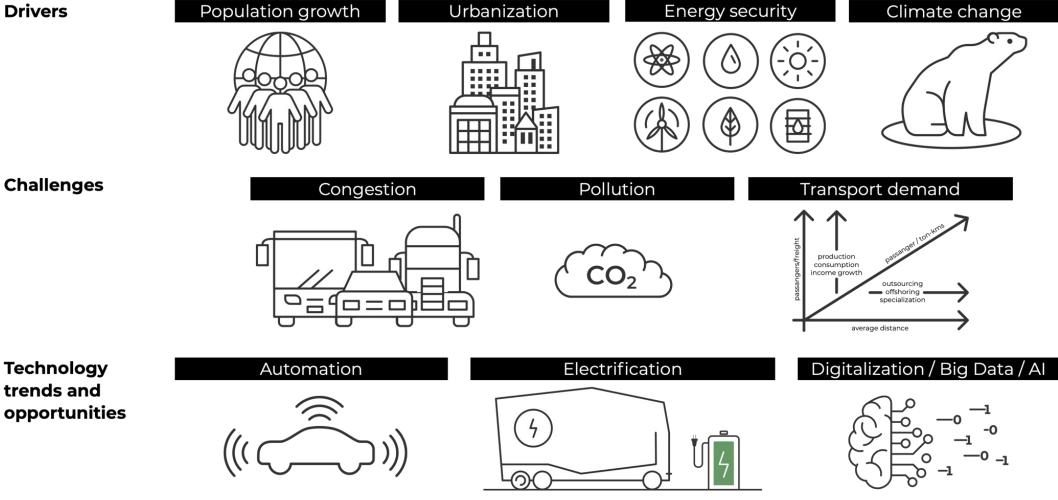
Gordian Logistics Optimization Systems

- "Making transport planning easy and effective by untangling millions of movement traces"
- 2020 IVA 100 List (Infrastructure): <u>https://www.iva.se/projekt/research2business/</u>

ABConnect

- "Networking solutions for next-generation swarm intelligence"
- 2022 IVA List (Infrastructure): <u>https://www.iva.se/projekt/research2business/ivas-100-lista-2022/trafiktorn-</u>

for-uppkopplade-sjalvkorande-fordon/



ITRL – INTEGRATED TRANSPORT RESEARCH LAB

Need for Transport Planning

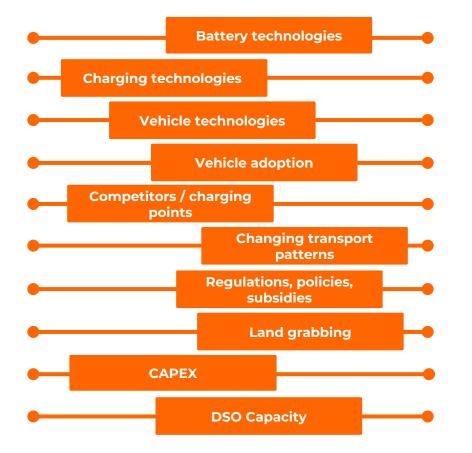
Drivers

Region Stockholm T TRAFIKVERKET ERICSSON

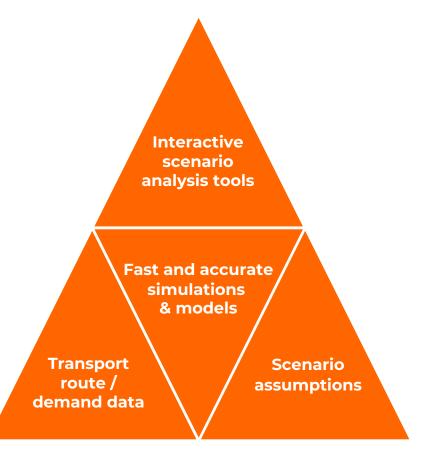
ITRL—**INTEGRATED TRANSPORT RESEARCH LAB**

GORDIAN

Intelligence for cost-effective and future-proof commercial transport electrification


Intelligence for Electromobility

We deliver advice and superior SaaS products to help accelerate transport electrification by reducing the costs and risks in transport electrification investments and operations.



Customer reality

Customer uncertainties

The Gordian solution

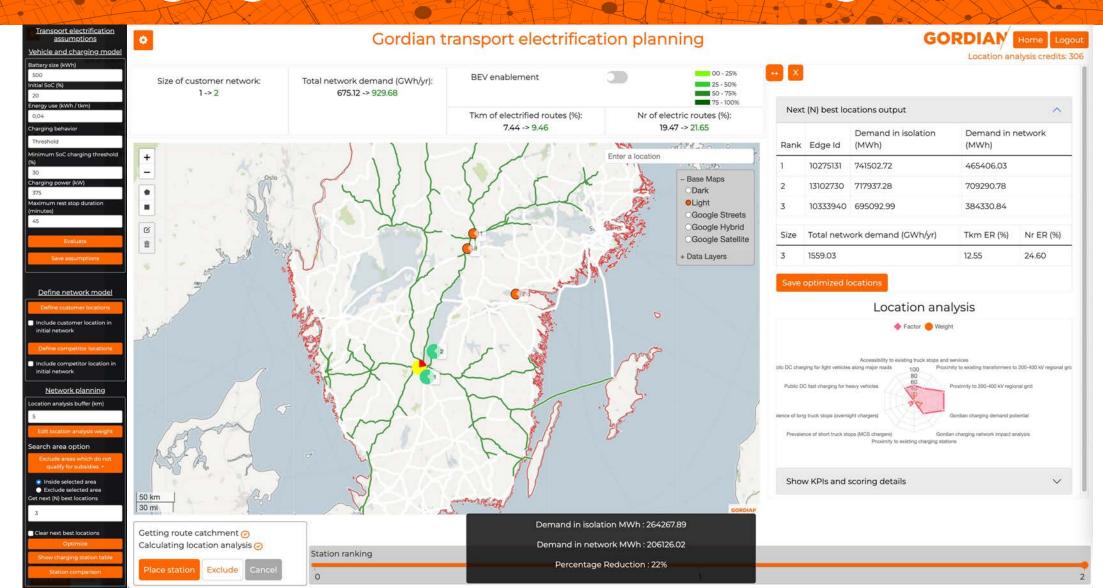
Our competitive advantage

TRANSPORT ROUTES AND CHARGING INFRA AFFECTS

MANAGE COMPLEX DATA AND COMPUTATIONS

Planning and operations of transport electrification can be described with a **logical route-based network model**, but the optimization of the plans and operations are computationally complex and intractable using best practices.

INCREASE ANALYTIC SPEED

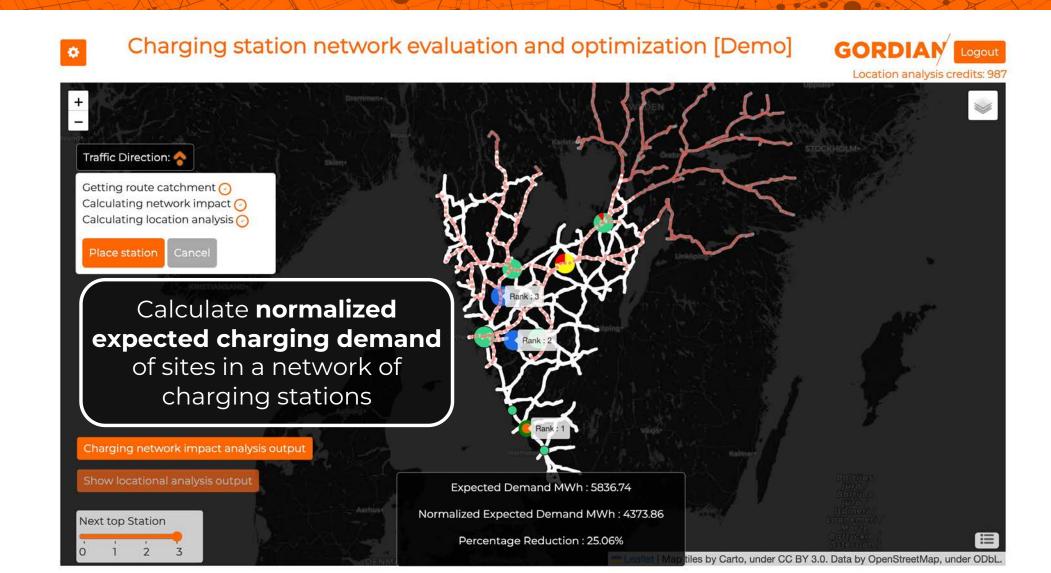

Proprietary technology (**50x lossless compression of indexed route data and analytics**) speeds up the calculation by a factor of 5000.

IMPROVE CUSTOMER PERFORMANCE

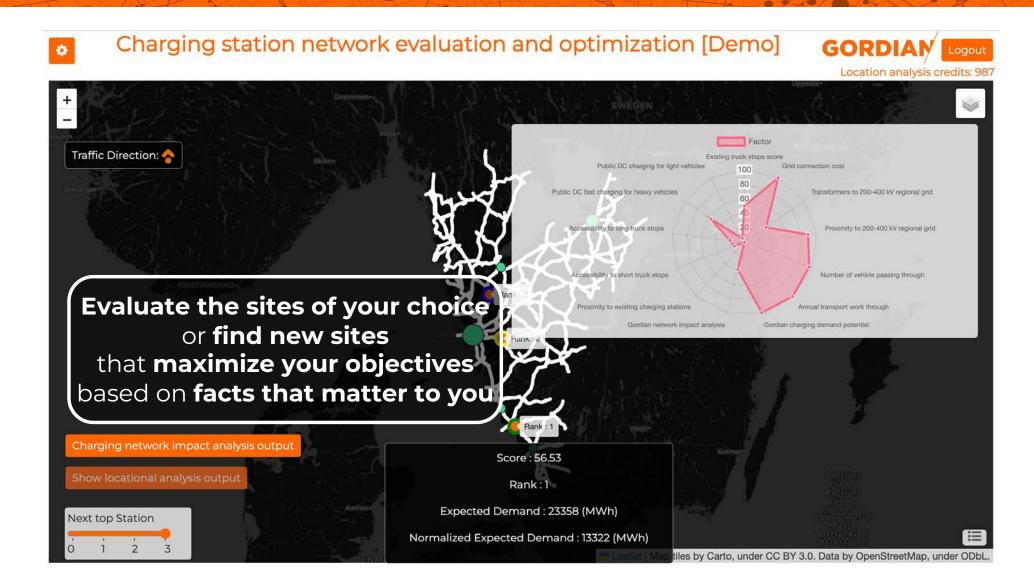
Gordian makes accurate optimization possible, which yields up to **140% increase in charging network performance** (ROI, adoption rates, customer journey etc.) of the plans and operation.

The Gordian

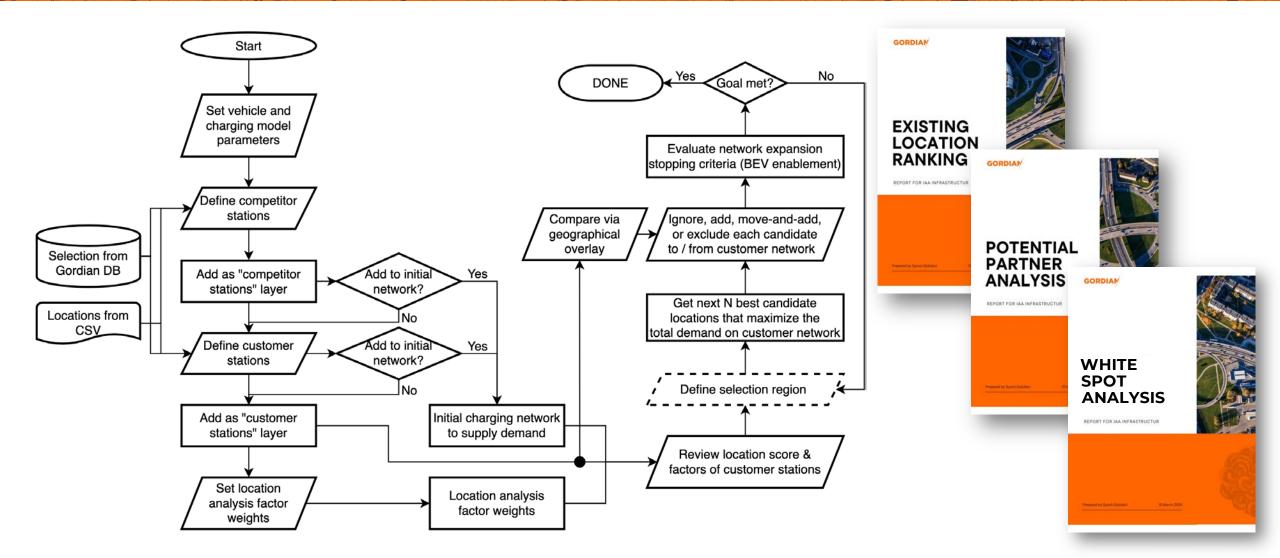
Charging Infrastructure Planning Platform



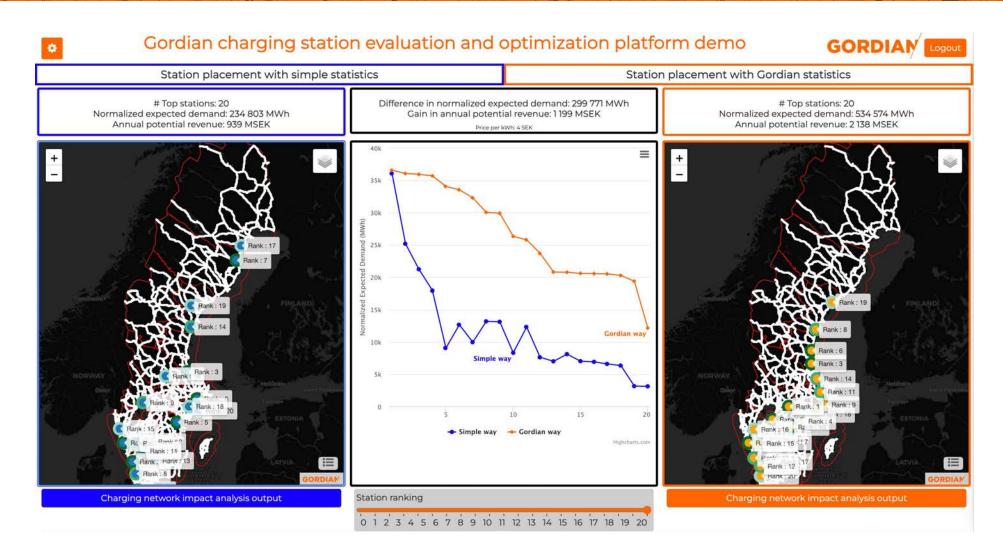
Harmonized, up-to-date datasets and site and network KPIs across Europe


Data	Sweden sources	Europe
Existing charging stations	Charge Finder	Charge Finder
Truck stops with services	TransPark	TransPark
Transport work	Trafikverket	Synthetic European Freight Flows and Routes based on ETIS Plus
Transport routes	Trafikverket - Swedish National Freight Model SAMGODS	Synthetic European Freight Flows and Routes based on ETIS Plus
Road network	Trafikverket	ETIS Plus / OSM
ACEA: Long Truck Stoppings	ACEA	ACEA
ACEA: Short Truck Stoppings	ACEA	ACEA
Country boundaries	OSM	OSM
Grid connection cost	Swedish Land Survey (Lantmateriet)	In progress
Transformers	Swedish Land Survey (Lantmateriet)	In progress
Grid 200 - 400 V	Swedish Land Survey (Lantmateriet)	In progress
Grid 25 - 200 V	Swedish Land Survey (Lantmateriet)	In progress
CC1: Priority road network for heavy transport	KlimatKlivet incentive	In progress
CC1: Public DC fast charging stations for heavy vehicles	KlimatKlivet incentive	In progress
CCI: Non searchable areas due to existing public DC fast charging stations for heavy vehicles	KlimatKlivet incentive	In progress
CC2: Priority road network for long-distance passenger journeys	KlimatKlivet incentive	In progress
CC2: Public DC charging stations for light vehicle	KlimatKlivet incentive	In progress
CC2: Non searchable areas due to existing public DC charging stations for light vehicle service areas	KlimatKlivet incentive	In progress
CC3: Urban areas - searchable areas for public DC charging for light vehicles within urban areas	KlimatKlivet incentive	In progress
CC3: Non searchable areas for public DC charging for light vehicles within urban areas	KlimatKlivet incentive	In progress
CC4: Non searchable areas for public AC charging for light vehicles within urban areas	KlimatKlivet incentive	In progress
CC4: Searchable areas for public AC charging for light vehicles within urban areas	KlimatKlivet incentive	In progress

Name	Туре	Unit / Values
Proximity to existing truck stops and services	Criterion	N/A
lumber of truck stops	Factor/KPI	#
ervices available at the truck stops	Factor/KPI	# of distinct
roximity to energy supply	Criterion	N/A
irid connection cost	Factor/KPI	MSEK (-)
lumber of transformers	Factor/KPI	#
Distance to closest transformer	Factor/KPI	km (-)
Distance to 200-400 kV regional grid line	Factor/KPI	km (-)
roximity to charging demand	Criterion	N/A
umber of vehicles passing through this point in each weight class (10t, 20t, 30t, 40t)	Factor/KPI	#, #, #, #
nnual transport work through	Factor/KPI	tkm
nnual transport work through	Factor/KPI	vkm
ordian annual charging demand potential	Subcriterion	N/A
xpected charging demand	Factor/KPI	MWh
ormalized expected charging demand	Factor/KPI	MWh
ordian network impacts on charging demands	Subcriterion	N/A
osses due to competition	Factor/KPI	MWh (-)
osses due to cannibalization	Factor/KPI	MWh (-)
osses inflicted on competition	Factor/KPI	MWh
osses inflicted via cannibalization	Factor/KPI	MWh (-)
roximity to existing charging stations	Criterion	N/A
istance to closest charging station	Factor/KPI	km
umber of existing charging stations	Factor/KPI	# (-)
roximity to existing truck stoppings	Criterion	N/A
roximity to short truck stoppings (MCS chargers)	Subcriterion	N/A
umber of top 1% stoppings ≤1 km from TEN-T network && ≤50% of stops are shorter than 1h	Factor/KPI	#
umber of top 1% stoppings >1 km from TEN-T network && ≤50% of stops are shorter than 1h	Factor/KPI	#
umber of top 1% stoppings ≤1 km from TEN-T network && >50% of stops are shorter than 1h	Factor/KPI	#
umber of top 1% stoppings >1 km from TEN-T network && >50% of stops are shorter than 1h	Factor/KPI	#
lumbers for top 2-5% stoppings	Factor/KPI	#, #, #, #
umbers for top 6-10% stoppings	Factor/KPI	#, #, #, #
umbers for top 11-50% stoppings	Factor/KPI	#, #, #, #
umbers for bottom 50% stoppings	Factor/KPI	#, #, #, #
roximity to long truck stoppings (overnight chargers)	Subcriterion	N/A
umber of top 1% stoppings ≤1 km from TEN-T network && ≤50% of stops are at least 8h long	Factor/KPI	#
umber of top 1% stoppings ≥1 km from TEN-T network && ≤50% of stops are at least 8h long	Factor/KPI	#
umber of top 1% stoppings ≤1 km from TEN-T network && >50% of stops are at least 8h long	Factor/KPI	#
umber of top 1% stoppings >1 km from TEN-T network && >50% of stops are at least 6h long	Factor/KPI	#
umbers for top 2-5% stoppings	Factor/KPI	#, #, #, #
umbers for top 6-10% stoppings	Factor/KPI	#, #, #, #
umbers for top 11-50% stoppings	Factor/KPI	#, #, #, #
umbers for bottom 50% stoppings	Factor/KPI	#. #. #. #
kelihood for subsidies	Criterion	N/A
kelihood for subsidies kelihood for subsidies from KlimatKlivet for charging category 1 – Public DC fast charging for		N/A
eavy trucks	Subcittemon	
istance to priority road network for heavy transports	Factor/KPI	km (-)
istance to closest public DC fast charging stations for heavy vehicles	Factor/KPI	km
ikelihood for subsidies from KlimatKlivet for charging category 2 – Public DC charging for light shicles along major roads	Subcriterion	N/A
istance to priority road network for long-distance passenger / light vehicle journeys	Factor/KPI	km (-)
Distance to closest public DC charging stations for light vehicle	Factor/KPI	km


Charging network impact analysis

C Multi-criteria site evaluation and optimization



Simple interactive planning process for multiple scenario analysis types

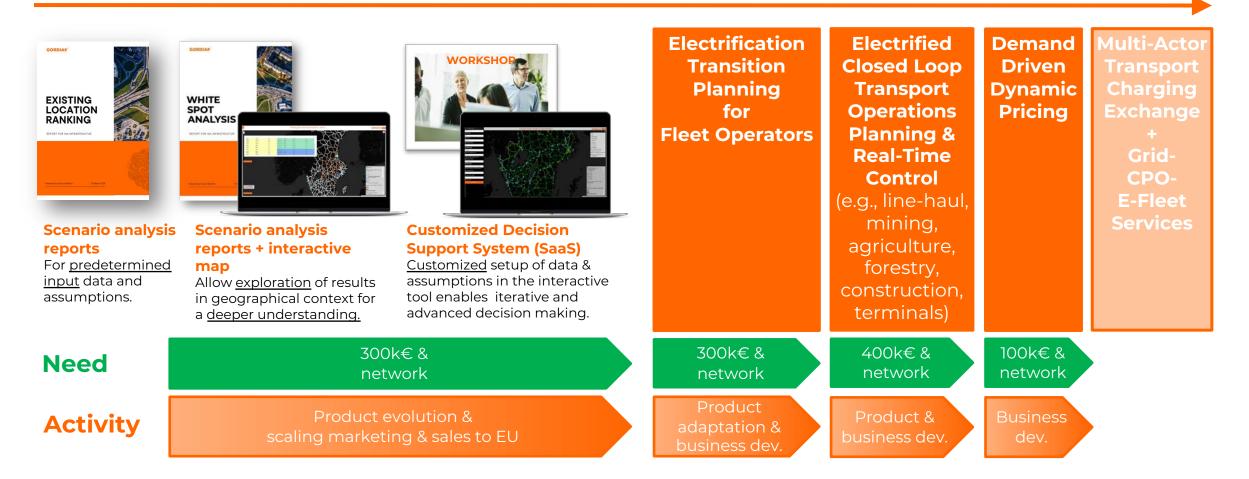
The Gordian value proposition

Country	Gtkm	Relative market size
Germany	780	7,2
France	505	4,6
Italy	411	3,8
Poland	350	3,2
United Kingdom	274	2,5
Spain	231	2,1
Sweden	109	Baseline
Belgium	104	1
Netherlands	94	0,9
Austria	90	0,8
Czech Republic	81	0,7
Switzerland	54	0,5
Denmark	46	0,4
Russian Federation	43	0,4
Hungary	42	0,4
Slovakia	35	0,3
Romania	26	0,2
Greece	26	0,2
Portugal	24	0,2
Finland	22	0,2
Croatia	19	0,2
Norway	15	0,1

VALUE SCALING TO A LARGE CPO Est. €13bn ARR* potential revenue gain by selecting, dimensioning, and sequencing the rollout of 1700 sites across Europe.

* Assumes: Full transport electrification scenario, 300 kWh batteries, €2m average revenue gain per location in Sweden, gains on and deployments of locations in other countries is proportional to the relative market size.

Packaging, pricing, business model & initial traction


	Existing Location Analysis	Potential Partner Analysis	WHITE SPOT ANALYSIS White Spot Analysis	WORKSHOW SaaS	
Standard analysis (< 20 sites)	4k€	4k€	8k€	30k€ custom analysis consultancy 12k€ Recharge project Onboarding SaaS conversion 10-30k€/m SaaS platform access	
Additional sites	+ 100€ / site	+ 100€ / site	+ 200€ / site		
Added interactive map	+ 3k€	+ 3k€	+ 3k€	 with support 90k€ 6month pilot with Milence in final negotiations 5 SQLs 	

Product roadmap: needs & activities

TODAY: CHARGING INFRASTRUCTURE PLANNING

TOMORROW

Market potential

HIGH STAKES:

Global fast-charging infrastructure investments:

NEXT 5 YEARS HEAVY TRANSPORT: €28bn

NEXT 20 YEARS CAR & HEAVY TRANSPORT: €450bn

SAAS MARKETS BY 2030:

€9.2bn management decision software €7bn energy-fleet mgmt. software €24.7bn logistic software

Team

Gyözö Gidofalvi Co-founder CEO

Mattias Tingvall Senior Advisor Working Chairman of Board

Ehsan Saqib Co-founder Head of SaaS Solutions

We live and breathe mobility analytics, Al and optimization!

Achievements and journey so far

https://www.thegordian.io/

info@thegordian.io