
DemandProp: a scalable algorithm for real-time predictive
positioning of fleets in dynamic ridesharing systems

Jesper Provoost
provoost@kth.se

University of Twente
Enschede, The Netherlands

Gyözö Gidófalvi
gyozo.gidofalvi@abe.kth.se

Royal Institute of Technology (KTH)
Stockholm, Sweden

Egoistic (EPD)DemandProp RandomAltruistic observed
demand (AOD)

Altruistic predicted
demand (APD)

09:00

18:00

No repositioning

Figure 1: Positions of fleet subject to DemandProp and baseline repositioning strategies

ABSTRACT
In dynamic ridesharing systems, repositioning of idle vehicles is an
essential operational task to maximize resource efficiency and im-
prove customer satisfaction. In most practical taxi services, drivers
position themselves to maximize their individual benefits, leading
to decentralized decision-making. Moreover, knowledge about cur-
rent and past demands is already outdated by the time that drivers
arrive at their target position. As a consequence, the system-wide
performance is likely to be suboptimal. Most existing approaches
to intelligent fleet repositioning only make decisions based on past
observations, do not consider shareability of trips or are unsuitable
for real-time operation in networks with thousands of road seg-
ments. We therefore present a real-time predictive fleet positioning
technique that relies on deep neural networks (DNNs) and a sto-
chastic model to optimally (re)position idle vehicles in a ridesharing
system. Our approach, called DemandProp, works on large-scale
graph representations of the road network and enables fine-grained
and precise decision-making. We evaluated our approach through
extensive simulation studies on real-world datasets from New York
City, USA. The results demonstrate that our approach outperforms
all baseline methods with regard to resource efficiency and trans-
port efficiency. Compared to an egoistic strategy, which is most
prevalent in traditional taxi systems, delays can be reduced by 69%
and on-time performance can be increased by more than 15%. Also,

the daily idle time for vehicles can be reduced by 60 minutes. De-
mandProp enables operators to reduce the number of vehicles in
the fleet by more than 25% while ensuring satisfactory on-time
performance and reject rates. Our results also show that Demand-
Prop excels especially in situations where most vehicles are already
occupied, demonstrating its ability of performing fine-grained and
proactive optimization also during peak hours.

1 INTRODUCTION
Shared transportation services allow multiple persons or goods to
complete their trip inside the same vehicle. It is regarded as an essen-
tial component in sustainable urban transportation, as it increases
vehicle utilization while alleviating the burden on resources and
infrastructure. Implementing shared transportation systems can
therefore provide substantial benefits with regard to operational
costs, traffic congestion and consequently pollution. [2].

Ridesharing is a clear example of shared transportation which
concerns movement of people. Traditional ridesharing approaches,
where drivers offer a seat in their vehicles to passengers who are
travelling in the same direction, are suitable for large-distance
travel but cannot provide enough flexibility to be implemented for
short, high-frequency trip requests. Dynamic ridesharing, which
has been facilitated by the worldwide growth of smartphone usage

Provoost et al.

and social networking, provides more flexibility by fulfilling on-
demand trip requests in real-time. Customers of such a service
can request a trip through their smartphone (by providing a real-
time GPS location), after which the trip requests are assigned to
a vehicle [5]. As of today, most work in this area has focused on
optimizing the allocation of vehicles to trip requests, i.e. solving
the request-trip-vehicle assignment problem [4, 7, 18, 21].

Another substantial influence on the transport and resource
efficiency of shared transportation networks is the positioning of
idle vehicles inside the network [16]. This will be the focus of this
paper. In traditional taxi systems, drivers are individual agents
who decide where they position themselves, primarily with the
objective of maximizing their individual likelihood of finding a
customer. Their decision is often based on observations of the
past or knowledge about the current situation. However, with this
egoistic and reactive strategy, drivers cannot properly harmonize
their decisions and the knowledge about demand will already be
outdated by the time that drivers arrive at their target position.
Hence, the system-wide performance is likely to be suboptimal. To
illustrate, when drivers are informed that the current demand at a
train station is high due to a large number of incoming trains, many
might reposition themselves to this area, leading to an oversupply
at the station and a shortage of vehicles in areas with smaller but
scattered demands. As a consequence, system-wide customer delays
will increase and more vehicles will remain underutilized.

In shared transportation systems, optimizing repositioning strate-
gies is even more essential to ensure that requests which are share-
able can be served by as little vehicles as possible, thus making
optimal use of the resources that are available throughout the net-
work. Currently, repositioning in ridesharing systems is often done
by raising prices in areas with higher demand, and therefore pro-
viding an incentive for drivers to position themselves in those areas.
Examples of this are the “dynamic pricing” strategies used by com-
panies like Lyft and Uber [6]. However, even though they can be
effective to balance the supply and demand in a decentralized sys-
tem, these approaches can still be regarded as egoistic and lack
the ability to perform system-wide optimization at fine granularity.
The characteristics of dynamic shared transportation, i.e. real-time
availability of knowledge about trip requests and vehicle dispatch
decisions, make it feasible to move from an egoistic and reactive
repositioning strategy to a more altruistic and proactive one, in or-
der to obtain a better system-wide performance in terms of resource
efficiency and QoS [5].

This paper introduces DemandProp; a real-time fleet positioning
technique that relies on deep neural networks (DNNs) and a sto-
chastic model to optimally (re)position vehicles inside a ridesharing
system. DemandProp is able to predict demands for all edges in the
network with high accuracy, and applies algorithms to propagate
the expected demand values towards the idle vehicles in the net-
work, with the aim of maximizing cumulative expected demand
served by all vehicles while minimizing the distance travelled to
serve those demands. DemandProp is scalable and resilient and is
able to optimize in real-time (i.e. at minute interval) for systems
with more than 5,000 vehicles and 9,000 edges in the road network.
DemandProp is also ready for processing streamed input data re-
garding demand, as well as computation offloading to vehicles.

The contributions of this paper can be summarized as follows:

• We propose a scalable real-time ridesharing repositioning
algorithm with the aim of minimizing customer delays and
maximizing resource utilization. To the best of our knowl-
edge, this is the first work which is able to deliver fine-
grained and precise decision-making at real-world scale level
of a ridesharing service, by incorporating the complete graph
structure of the road network into the prediction and reposi-
tioning process.

• We propose algorithms that can match the trip requests
from real-world datasets to vertices in the graph. By means
of shortest path routing, the estimated flows on the edges can
be computed for every timestep. Subsequently, aggregation
is performed which yields an estimation of the flow on every
edge at any given time.

• We propose two deep neural networks configurations which,
based on real-world trip datasets, are able to predict for any
timestamp: 1) the aggregated flow for every edge, and 2) the
demand for every vertex in the network. The models can
predict using temporal inputs and a lookback window of de-
mand in the past hour, hence supporting real-time streaming
input data for improved accuracy. Both DNNs deliver pre-
dictions for the entire graph (i.e. > 3500 vertices and > 8500
edges) with high precision (𝑅2 > 0.9) while maintaining low
prediction times (< 0.1 seconds).

• We experimentally evaluate the DemandProp algorithm and
demonstrate its effectiveness and efficiency by means of sim-
ulations of a large-scale real-world ridesharing system. The
simulation is powered by a full-scale graph representation
of the road network, an extensive trip dataset, as well as a
travel time prediction model.

2 RELATEDWORK
In recent years, several techniques for on-demand vehicle dispatch-
ing and repositioning have been proposed in literature. However,
most of these techniques target traditional taxi systems and do
not consider the concept of shareability which is essential in mak-
ing shared transportation services effective [14, 15, 17]. Moreover,
many of the works are aimed at the objectives of the individual
drivers instead of the system-wide performance [12]. Others con-
sider only fixed locations as possible start and end positions of trips
(e.g. bikesharing systems with permanent stations) [11], which
differs in complexity from the problem under study where new
customers can be picked up at any position inside the network.
There are other works available which consider shareability inside
ridesharing networks. For instance, Santi et al. [19] propose share-
ability networks as a method to quantify the benefits of ridesharing.
Vazifeh et al. [23] build further upon this work, using classic graph-
theoretic methods to compute the potential reduction of fleet size.
Even though the authors argue that their methods can be used for
real-time vehicle dispatching, the repositioning of idle vehicles is
not considered.

Somework has been done regarding idle repositioning in rideshar-
ing systems, for example Braverman et al. [9] who integrate a closed
queueing networkmodel to route empty vehicles. Furthermore, [20]
and [24] also propose a queueing theory approach to idle vehicle
repositioning. However, even though the authors demonstrate that

DemandProp: a scalable algorithm for real-time predictive positioning of fleets in dynamic ridesharing systems

their respective techniques outperform others, the experiments
were performed on small and simplistic models and convergence
occurs on the order of hours [9]. Therefore, such approaches are
inadequate for real-time optimization of repositioning strategies
with the scale level and granularity that are required by full-scale
ridesharing services.

One solution that is proposed in literature is to route idle vehicles
towards areas where trip requests have been previously rejected
while minimizing the repositioning distance [3]. Even though this
method makes sure that the demand-supply mismatch will be bal-
anced eventually, the downside is that the decision-making is highly
reactive and does not take into account the future evolution of the
demand and supply. In a follow-up paper [4], the authors present
a more sophisticated approach which takes future demands into
account. They sample the expected demand from a probability
distribution and compute dispatching routes such that potential
demand is maximized along the route. This essentially integrates
the repositioning process with the vehicle routing. Although a
decrease in waiting no significant increase of service rate was ob-
served as compared to a reactive strategy. In addition, with a fleet
size of 3000 vehicles the computation time increases to more than
60 seconds, which impacts the scalability of the proposed solution.
The authors suggest “improving the rebalancing of vehicles” (i.e.
as a separate process, not integrated with vehicle routing) in fu-
ture work. In another paper, Jung and Chow [13] compare three
different repositioning strategies: driving towards areas with high
pickup probabilities, driving to depots and remaining at the last
dropoff location (i.e. no repositioning). They simulate the different
strategies using real-world taxi trip data from New York City. Both
the first and second strategies improve the request acceptance rate
in comparison to the scenario where no repositioning takes place.
However, their approach does not consider the current vehicle state,
nor the current or future demand on the road network. As a con-
sequence, it lacks the ability to optimize repositioning routes in a
proactive and vehicle-specific manner.

In [16], Pouls, Meyer and Ahuja propose an intelligent reposi-
tioning algorithm for dynamic ridesharing which they simulate on
large real-world data. The algorithm is forecast-driven and is there-
fore able to make proactive decisions. The authors demonstrate that
their approach is suitable for real-time usage even in large-scale
scenarios. However, the authors use grid-based partitioning (i.e. of 1
km2) as the environment for simulating vehicle movements as well
as repositioning decisions. This method neglects a large amount
of information inside the graph structure of the road network, and
therefore does not yield fine-grained repositioning policies, nor
accurate simulation of vehicle positions and routing. Furthermore,
the algorithm needs several parameters which need to be estimated
empirically, such as a discount for the demand coverage if a vehicle
is already partially occupied. This is a potentially vulnerable aspect
of the proposed methodology, since wrongly chosen parameters
can yield inefficient repositioning and unrealistic simulation results.
It suggests a gap for repositioning algorithms which can directly
generate optimized policies based on predicted demand data and
probabilistic models for the spatiotemporal evolution of demand.

3 METHODOLOGY
3.1 Overview
The methodology can be divided in five different components. First,
we preprocess and clean the real-world trip datasets and map the
trips to the vertices in the network under study. Subsequently,
we algorithmically compute the flow (i.e. number of passengers)
that travels on every edge for every time period. We build and
train two deep learning models to predict the aforementioned edge
flows as well as the demands on every vertex. Finally, the proposed
repositioning algorithm DemandProp is described.

3.2 Matching Trips to Vertices
We start by defining the set 𝑅 of trip requests. An individual trip
request 𝑟 ∈ 𝑅 contains multiple attributes: a pickup timestamp,
pickup coordinates and dropoff coordinates. We also define the
road network as a directed graph 𝐺 , with a set 𝑉 of vertices and a
set 𝐸 of edges. We simply match the trip’s pickup coordinates with
the nearest vertex based on the haversine distance 𝑑 (𝑃1, 𝑃2), and
do the same for the dropoff coordinates. Upon implementation, the
performance of this algorithm is enhanced using vectorization. The
proposed approach is shown in Appendix A.
The algorithm yields an origin-destination mapping (𝑣𝑜 , 𝑣𝑑) for all
𝑟 ∈ 𝑅, with 𝑣𝑜 being the pickup node and 𝑣𝑑 being the dropoff node.
With the resulting origin-destination mapping, we then perform
the following tasks:

• We determine the travel times (i.e. the time difference in
seconds between pickup and dropoff time) for all origin-
destination pairs of vertices in the dataset. Accordingly, we
train an XGBoost model which can predict the travel times
between an arbitrary pair of vertices in 𝐺 .

• We aggregate the demands for every vertex in intervals Δ𝑡
of 15 minutes. This results in a vertex demand dataset which
can be used to train the corresponding neural network.

• According to the methodology proposed in Section 3.3, we
aggregate the flows on every edge in intervals Δ𝑡 of 15 min-
utes. This results in a edge flow dataset which can be used
to train the corresponding neural network. The model con-
figuration and training processes are further described in
Section 3.4.

3.3 Computing Aggregated Edge Flows
In this paper, an aggregation interval Δ𝑡 = 15 minutes is selected.
We aim to compute the flows which traverse every edge 𝑒 ∈ 𝐸 for
each aggregation interval in the dataset. Based on the timestamps
of the first and last request in the dataset, we know the number of
intervals 𝐾 . Since the dataset only contains the origin-destination
mapping and not the intermediate vertices or edges that the vehi-
cles traversed along, we need to estimate the path of the vehicles
between the pickup and dropoff point. We do this by applying Di-
jkstra’s shortest path algorithm, where the weights 𝑤𝑒 for 𝑒 ∈ 𝐸
are defined as the predicted travel times between the start and end
vertices 𝑣0 and 𝑣1 of edge 𝑒 . Then, for every request 𝑟 ∈ 𝑅, we com-
pute the path as a sequence of edges (𝑒0, 𝑒1, ..., 𝑒𝑛). This path can
subsequently be traversed, keeping track of the travel time from

Provoost et al.

the initial time at which the request was made. Based on this inter-
mediate travel time, the number of passengers for request 𝑟 can be
added to the flow matrix at that timestep and for the edge(s) which
it passes along at that particular time. When the algorithm is fin-
ished, the flow matrix 𝐿 will therefore contain, for every 15-minute
timestep, the total number of passengers that traverses along all
edges in the network.

3.4 Predicting Vertex Demand and Edge Flow
In order to enable proactive repositioning with DemandProp, the
expected demands on the vertices and flows on the edges must be
computed at every timestep. Therefore, two separate deep neural
network configurations are proposed which have the ability to
predict with a horizon of maximally one hour ahead.

Both the vertex demand model and the edge flow model accept
the same inputs: the cyclic time variables (hour, minute, weekday,
month, day) and a lookback window. The lookback window is de-
fined as the mean observed demand at every vertex in the network
during the past 60 minutes. The decision was made to use the same
input space for both models, since both models are expected to
benefit from the observations of demand and since it is computa-
tionally easy to keep track of the incoming trip requests. Also, with
this technique input arrays have to be computed only once per
iteration of the simulator, which facilitates faster overall prediction
(and thus repositioning) times. Hence, the number of inputs to both
models is 5 + |𝑉 |. The vertex demand model predicts the demand at
a 15-minute aggregation interval, and therefore generates |𝑉 | out-
puts in total. The edge flow model predicts a value for every edge,
and therefore has an output layer of size |𝐸 |. Both models predict
the aggregated value (either demand or flow) for the 15 minutes
immediately after the timestamp that was provided as input to the
model. In order to find a balance between model complexity and
the potential threat of underfitting, the vertex demand model was
chosen to have two hidden layers of 3,600 neurons each, approxi-
mating the number of vertices of the road network under study. For
the same reason, the edge flow model is equipped with two hidden
layers of 3,600 and 6,000 neurons, respectively.

3.5 Repositioning of fleet
The vertex demand model and the edge flow model provide the
fundaments of the DemandProp repositioning algorithm. To make
predictions, the current time as well as the lookback window of
observed demands serve as input variables. The initial prediction
step yields two matrices containing vertex demands and edge flows
for all prediction horizons. The first step is to convert the edge
flows into a transition probability matrix 𝑃𝑝𝑎𝑡ℎ . Since we know the
passenger flow for every edge in 𝐸, we can determine the proba-
bilities that an edge is traversed from its source node. Hence, for
every vertex the probabilities of its outgoing edges sum up to one.
Subsequently, multiplying these probabilities with the predicted
vertex demands yields a |𝐻 |x|𝐸 | matrix of estimated edge demands,
which we denote as 𝐷 . The matrices 𝑃𝑝𝑎𝑡ℎ and 𝐷 are further used
during the repositioning process.

Instead of optimizing from the perspective of the vehicles, our
proposed approach is edge-centric: the algorithm aims to satisfy the
predicted demands at the edges in decreasing order. DemandProp

essentially performs a small-scale simulation within discretized
time intervals (i.e. horizons 𝐻 with an interval of Δ𝑡 = 15 minutes),
serving and propagating demands while keeping track of interme-
diate vehicle locations and building the repositioning paths along
the way. At every iteration, it performs a backwards traversal from
that edge through the graph to find the optimal vehicle(s) to serve
the demand on the edge. To determine how much of the demand on
the edge can be served by a vehicle, we first compute the expected
load (i.e. number of passengers inside the vehicle) E[𝐿] based on its
current load, the transition probabilities 𝑃 and predicted travel time.
If we let𝑋 be a random variable denoting the travel time in minutes,
then based on the TLC dataset we use a lognormal distribution to
model the probability that a ride ends after a given time.

After updating the vehicle’s capacity and position, and serving
(a part of) the demand, the path from the vehicle’s location to the
edge is added to the planned repositioning route of that vehicle. The
demand 𝑑 that is served on an intermediate edge can be computed
by keeping track of the backwards (i.e. from the source of the edge
to the vehicle) transition probabilities 𝑃𝑝𝑎𝑡ℎ along the shortest path
and the necessary capacity 𝐶 of the vehicle at the end of the path.

The basic functionality of the algorithm is illustrated in Figure
2. Suppose that we have a small sample graph of seven vertices
A-G. A fleet of four vehicles (each with a capacity of five seats) is
operating in the environment. Two vehicles are initially located
at vertex D (with 4 and 5 free seats, respectively), one at B (with
2 seats remaining) and another at E (with all 5 seats remaining).
The edge demands (contained in 𝐷) are displayed as boldfaced
for every edge in the graph. For the sake of simplicity, we let the
travel time for every edge be 2 minutes. The algorithm will first sort
the edges by their remaining predicted demand for the coming 15
minutes. In the first iteration of the algorithm, the edge from D to
F (which we will call 𝑒𝑟𝑒 𝑓) has the highest remaining demand of 12.
The algorithm first tries to satisfy this demand using the vehicles
that are currently located at the source of the edge (i.e. vertex D).
The red and green vehicle are located at D and have a remaining
capacity of 4 and 5, respectively. Therefore, the remaining demand
on 𝑒𝑟𝑒 𝑓 can be computed as 12 − 4 − 5 = 3 and the sequence from
D to F is added to the repositioning paths of both vehicles. Both
vehicles are fully utilized to serve the demand, so their remaining
capacity will be 0. However, there is still an unserved demand of 3
remaining on 𝑒𝑟𝑒 𝑓 . The DemandProp algorithm will traverse the
graph using breadth-first search (BFS) until all demand is satisfied
or until the accumulated travel time in all branches of the search
has exceeded the 15-minute horizon. From 𝑒𝑟𝑒 𝑓 , it searches the
preceding edges (i.e. incoming edges at vertex D), which means
that we first examine the edge from B to D. The blue vehicle, with
currently 2 remaining seats, is located at the source of this edge.
Hence, in step 2 , another part of the demand at 𝑒𝑟𝑒 𝑓 can be served.
The probability that the current load can be retained at vertex D
can be computed as 𝑝𝑙𝑜𝑎𝑑 ≈ 0.99088. The expected load at vertex
D is consequently computed as E[𝐿] = 2 · 0.99088 = 2.97264, and
the expected number of free seats is 5 − 2.97264 = 2.02736. We
can therefore satisfy another part of the demand on 𝑒𝑟𝑒 𝑓 , with
3 − 2.02736 = 0.97264 remaining. Since all of the seats in the blue
vehicle are now either reserved or used, no intermediate demands

DemandProp: a scalable algorithm for real-time predictive positioning of fleets in dynamic ridesharing systems

B

D

p = 0.4

A

p = 0.6

F

E
p = 0.7

C

p = 0.3

p = 1.0

G

12

25

4

11 7

p = 1.0

5
B

D

p = 0.4

A

p = 0.6

F

E
p = 0.7

C

p = 0.3

p = 1.0

G

3

25

4

11 7

p = 1.0

5

4 5

0
0

2

B

D

p = 0.4

A

p = 0.6

F

E
p = 0.7

C

p = 0.3

p = 1.0

G

0.973

25

4

11 7

p = 1.0
5

0
0

0

2.027

B

D

p = 0.4

A

p = 0.6

F

E
p = 0.7

C

p = 0.3

p = 1.0

G

0

05

2.4

11 7

p = 1.0

5

0
0

0.427

1.4

5

3.4

2.027

0

D F

D F

B D F

E B D F

Repositioning paths

1 2 3 4 5

Figure 2: Illustrative example of generating repositioning paths using DemandProp

can be served. The sequence B-D-F is added to the repositioning
path of the vehicle.

In step 3 , we aim to satisfy the remaining demand of 0.973
at 𝑒𝑟𝑒 𝑓 . The algorithm traverses further through the graph and
finds the orange vehicle with 5 seats available. By repositioning
this vehicle, all remaining demand on 𝑒𝑟𝑒 𝑓 can be served while the
vehicle still has 5 − 0.983 = 4.027 remaining seats. Therefore the
algorithm can use this vehicle to serve intermediate demands, based
on the probability that these demands can be shared with the main
demand from D to F. The intermediate demands are computed in
backwards order, from D to E. Since there is a 1.0 probability 𝑝𝑝𝑎𝑡ℎ
that the demand from B to D ends up on 𝑒𝑟𝑒 𝑓 , the demandwhich can
be served from B to D can be computed as𝑚𝑖𝑛(2 · 1.0, 4.027) = 2.0.
Consequently, the demand which can be served from E to B can
be computed as 𝑚𝑖𝑛(4 · 0.4, 2.027) = 1.6. Overall, the remaining
demand on the edge from E to B is therefore 4 − 1.6 = 2.4. For all
four vehicles, this yields the repositioning paths shown in 5 .

4 EXPERIMENTAL SETUP
For the experiments, we determine New York City, USA to be the
city under study to simulate themovements of vehicles in a rideshar-
ing service. Since it is impossible to capture the movement of every
customer on a microscopic scale, we combine knowledge from real-
world trip requests, geographical data and travel time prediction to
model the demand and determine the realistic paths that vehicles
take inside the road network. Trip requests from the raw dataset
are ‘played back’ in the simulator, and simulated vehicles can serve
these trips based on their current state and planned path. Inside
the simulation environment, multiple relevant metrics concerning
resource and transport efficiency (such as vehicle occupancy, ac-
ceptance rate and customer delays) are measured at every timestep.
These metrics can be evaluated and compared for different repo-
sitioning strategies in several scenarios. The baseline algorithms,
experimental scenarios and performance metrics are introduced
and explained in the next subsection.

4.1 Datasets and pre-processing
Our experiments are based on a real-world taxi trip request dataset
which containsmore than 100million taxi trip requests from the city
of New York City, USA. The data is released by the New York City
Taxi and Limousine Commission (NYC TLC) on a monthly basis

[22]. We decide to use ‘traditional’ taxi data instead of specific data
about ridesharing for various reasons. First of all, the volume of data
is much larger for regular taxi systems, which benefits the accuracy
of our simulations and also facilitates assessment of the proposed
approach and its scalability in a real-world scenario. Moreover, the
high usage of TLC taxi data in relatedworkmeans that results can be
verified and compared with other approaches. Since our approach
and simulation environment integrate shareability at runtime, we
argue that data of regular taxi trips can be used to represent realistic
demands. This also provides advantages for themajority of potential
real-world implementations where trip data about ridesharing is
not (yet) available. Since mid-2016, TLC uses area codes instead
of coordinates to describe the origin and destination of trips. This
makes it harder to accurately match trips to vertices in the graph.
Hence, we use one year of trip data from July 2015 until July 2016,
where the coordinates are still available. The relevant attributes that
are available for every trip are: pickup date/time, pickup coordinates,
dropoff coordinates and number of passengers.

The graph representing the road network was retrieved from
OpenStreetMap using the OSMnx Python library [8]. Only the
Manhattan area of New York City was selected in order to have
a clear and well-defined study-area. Subsequently, irregularities
and redundancies were treated: duplicate vertices and edges were
consolidated and small isolated sections were removed. Dead-ends
were removed from the graph in order to prevent vehicles in the
simulator environment from getting stuck. The resulting directed
graph contains 3,555 vertices and 8,535 edges.

Based on the road network that is represented by the graph, only
the trips within Manhattan (i.e. both the pickup and dropoff coor-
dinates located in Manhattan) were queried from the trip request
dataset. Also, invalid trips are filtered from The trips are matched
to the vertices of the graph in accordance with the methodology
proposed in Section 3.2. From the resulting dataset, the edge flow
model and vertex demand model were trained according to Sections
3.3 and 3.4.

4.2 Simulator
We have developed a simulator which can simulate passenger de-
mand and the trajectories of a ridesharing fleet at intervals of 1
minute. All trip requests in the simulation are exactly reproduced
according to the trip request dataset as described in Section 4.1.

Provoost et al.

Based on the planned paths (i.e. either when serving requests or
repositioning), vehicles move from vertex to vertex inside the sim-
ulated road network. The path of a vehicle is defined as a queue
containing a sequence of vertices, where the first vertex in the
queue is removed once that vertex has been reached. Their speed
of movement along the edges is determined by the predicted travel
times, which are recomputed at an hourly interval. Vehicles are
objects which individually keep track of the current vertex and
the time that they have spent at that vertex - if the vehicle has
been there longer than the travel time towards the next vertex in
the queue, the vehicle will move to the next location and the first
element will be removed from the queue. This process of moving
vehicles through the network while taking expected travel times
into account forms the fundamental core of the simulator. During
a single iteration in the simulator, several actions are performed:

(1) Request retrieval Retrieve the requests that occur at the
current timestep from the dataset, merge with requests that
could not be served during the last five minutes.

(2) Request handling Handle the outstanding requests and
compute the optimal vehicles to serve them, based on the
number of vacant seats, distance from the new customer and
the expected delay for existing customers. If there are no
available vehicles within 2 km from the pickup location and
the request has been pending for more than 5 minutes, it is
rejected.

(3) Vehicle dispatching Dispatch the vehicles which have ac-
cepted a trip request in Step 2. Compute their updated path,
number of remaining vacant seats and estimated travel time.

(4) Vehicle repositioning This is the primary action under
study in this paper. Idle vehicles (i.e. with no occupied seats
and no planned route) are determined and repositioned along
a route which is computed by the repositioning algorithm
(either DemandProp or one of the baseline algorithms listed
in 4.3).

(5) Moving vehicles Based on the sum of time spent at the
current vertex and the time advancement in the simulator,
it is determined which vehicles should move to their next
vertex. If a vehicle moves to a new vertex, we check if the
vehicle has reached one of the following:

(a) The pickup vertex of its customer, in which case the cus-
tomer is picked up and the number of occupied seats is
increased.

(b) The dropoff vertex of its customer, in which case the cus-
tomer is dropped off and the number of occupied seats is
decreased. If the vehicle is now empty, it is marked as idle,
and will be repositioned in the next iteration (unless it can
serve a new request).

(6) Saving metrics The relevant metrics are stored in memory.
All measurements are saved to disk periodically at an interval
of 60 minutes (simulator time).

4.3 Baseline methods
The DemandProp algorithm proposed in this paper was compared
to five other repositioning strategies. These algorithms are outlined
in decreasing order of complexity:

• The altruistic predicted demand (APD) algorithm per-
forms the repositioning in a centralized way by solving an
assignment problem using a heuristic method. Using the
vertex demand model, the demands for the upcoming 30
minutes are predicted by which the vertices are sorted in
decreasing order. The predicted demands as well as the sup-
ply (i.e. number of seats available in idle vehicles) are then
normalized such that demand can be fully covered by sup-
ply, regardless of the current state of the system. Moving
down the list of sorted vertices, the algorithm attempts to
satisfy the demands by allocating idle vehicles to that vertex
until the demand has been satisfied, based on the greedy
approximation algorithm proposed by Dantzig [10] for solv-
ing the unbounded knapsack problem. To determine which
vehicle(s) should serve the demand at a particular vertex, a
heuristic is used. With 𝐶𝑛 being the number of remaining
seats of vehicle 𝑛, 𝑋𝑛, 𝑌𝑛 being its current position, 𝑑 (𝑃1, 𝑃2)
being the haversine distance in meters between two coordi-
nate pairs and 𝑣 being the vertex considered, the heuristic is
defined as:

ℎ𝑣 (𝑛) =
𝐶𝑛

𝑑 ((𝑋𝑛, 𝑌𝑛), 𝑣) + 1

The algorithm keeps track of the residue, such that no de-
mand is left unsatisfied. Finally, for every repositioned vehi-
cle the path towards the vertex is computed using Dijkstra’s
algorithm (the predicted travel times being the weights).

• The altruistic observed demand (AOD) algorithm is nearly
identical to the APD algorithm, except that a lookback win-
dow is used instead of predicted demands. A buffer is main-
tained which contains the number of passengers that were
made in the last hour. As a consequence, the algorithm is
reactive instead of proactive.

• The egoistic predicted demand (EPD) algorithm bears the
closest resemblance to the traditional repositioning strate-
gies in regular taxi systems, where drivers move to areas
where high demands are expected in the near future. There-
fore, unlike the APD and AOD algorithms, this is a decentral-
ized algorithm where decisions are not harmonized between
vehicles. A heuristic is used to reposition a vehicle to the
most attractive.With𝐷𝑣 being the demand at vertex 𝑣 ,𝑋𝑛, 𝑌𝑛
being the current position of vehicle 𝑛, 𝑑 (𝑃1, 𝑃2) being the
haversine distance in meters between two coordinate pairs
and 𝑣 being the vertex considered, the heuristic represents a
tradeoff between the demand and the distance to the vertex:

ℎ𝑛 (𝑣) =
𝐷𝑣

𝑑 ((𝑋𝑛, 𝑌𝑛), 𝑣) + 1

Hence, unlike the APD and AOD algorithms, we look from
the ‘egoistic’ perspective of the drivers instead of aiming to
fill the demands from the network’s perspective.

• The random repositioning strategy routes idle vehicles
to randomly selected vertices. Therefore, this repositioning
algorithm contains no intelligence and takes neither the
objectives of individual drivers nor system-wide benefits
into consideration.

DemandProp: a scalable algorithm for real-time predictive positioning of fleets in dynamic ridesharing systems

• In the no repositioning strategy, no action is taken when a
vehicle becomes idle. Vehicles will therefore remain curbside
at the same location until a new request can be served.

4.4 Experimental design
Using simulator runs, we aim to evaluate the effectiveness of the
DemandProp algorithm in comparison to other baseline methods.
For our experiments, we selected two periods of one week: Mon-
day November 2 until Sunday November 8, 2015 as well as April
11 until April 17, 2016. These periods were selected based on the
criteria that no public holidays, events or special weather condi-
tions occurred. Therefore, the simulations are performed based on
normal taxi movements within the city of New York. The vehicles
inside the ridesharing services are initialized with a fixed seating
capacity. This capacity is sampled from a probability distribution
which approximates the real-world taxi seating capacity in the New
York City taxi system [1]: with a 0.9 probability the taxi has a ca-
pacity of 4, and with 0.1 probability the taxi has a capacity of 5. We
want to evaluate the performance of DemandProp in two different
aspects of efficiency. First of all, we consider transport efficiency,
which concerns the delays and comfort experienced by customers of
the ridesharing service. Furthermore, we assess resource efficiency,
which involves the cost implications for the operator as well as the
environmental impact on society. Particularly, we want to discover
to what extent DemandProp can reduce fleet size while maintaining
transport efficiency at satisfactory levels.

4.4.1 Transport efficiency. At each iteration of the simulation (i.e.
at a minute resolution), the following metrics which concern trans-
port efficiency are recorded:

• The average waiting time experienced by customers. This
is the time between the moment that the request was made
until the customer is picked up.

• The average detour time experienced by customers. This
is the delay that occurs during the trip (i.e. between pickup
and dropoff) caused by serving other customers along the
way.

• The on-time performance, which is defined as the per-
centage of requests which is served with less than 5 minutes
of delay. The delay is composed of the extra waiting time (i.e.
when the customer is picked up later than initially planned
due to the pickup of a new customer) and the detour time.

• The averagenumber of customers per vehicle, which can
be regarded as an indicator of the comfort level experienced
by customers. It is preferred when customers spread out
more efficiently across the fleet.

4.4.2 Resource efficiency. The followingmetrics regarding resource
efficiency are recorded at each iteration of the simulation:

• The reject rate of requests, which is defined as the percent-
age of trip requests that must be rejected by a vehicle. It
therefore provides a measure for the availability of vehicles
and the demand-supply mismatch.

• The empty vehicle rate, which is defined as the percentage
of vehicles that is currently carrying no passengers. It pro-
vides a measure of how efficiently the space in the vehicles
is utilized.

• The average daily idle time of vehicles. This is the time per
day that a vehicle spends while carrying no passenger. From
the operator’s perspective, this is the time in which no rev-
enue is being generated and therefore should be minimized.

• The average daily distance covered of vehicles, i.e. the num-
ber of kilometers that a vehicle drives on an average day.

4.4.3 Experiments. In the principal experiment regarding transport
and resource efficiency, we use a fixed number of vehicles 𝑁 = 5000.
For every repositioning strategy (i.e. DemandProp and the baseline
methods), we then simulate the previously mentioned two weeks
of taxi trip requests and store the metrics after every simulated
minute. The results are subsequently aggregated, both for an entire
week as well as every weekday, hence facilitating the comparison
of repositioning strategies during different parts of the week.

To assess the possible fleet size reduction that can be achieved
by implementing DemandProp, we run the previous experiments
again, but for different values of the fleet size𝑁 . Because of time and
resource constraints, we choose 𝑁 to range from 4,000 to 6,000 with
intervals of 500. We determine a minimum on-time performance
of 80% and a maximum reject rate of 1.0% as reference values. We
then determine to what extent the fleet size can be reduced while
still adhering to these reference values.

5 RESULTS AND DISCUSSION
5.1 Model training and validation
We split both the vertex demand and edge flow datasets into 80%
training set and a 20% test set. 10% of the training set is used as a
validation set during the training process. Both the vertex demand
model and the edge flow model are trained for 2,000 epochs using
the Adam optimizer with a learning rate 𝛼 = 5 · 10−6 and using the
mean squared error (MSE) as the loss function. On the test dataset,
both models perform well, with the vertex demand model achieving
an 𝑅2 score of 0.80 and the edge flow model achieving an 𝑅2 score
of 0.91. The training results are shown in Table 4.

5.2 Simulation runs
First, we look at the results of the two simulator runs of the weeks
November 2-8 and April 11-17, respectively. These simulator runs
were executed with fleet size 𝑁 = 5000. Figure 3 shows the aggre-
gated metrics per weekday, while Table 1 provides the conclusive
metrics for the complete simulator runs. The table also contains
the increase and decrease percentages, which indicate the gains
or losses that DemandProp yields in comparison to the baseline
algorithms proposed in Section 4.3.

From the results in Figure 3 and 1, it emerges that the Demand-
Prop algorithm outperforms the baseline methods concerning trans-
port efficiency for every day of the week. With regard to the total
delay, DemandProp yields a 45.21% advantage over the most intel-
ligent baseline method (i.e. APD) and a 1501% advantage against
the strategy where vehicles are not repositioned at all. The egois-
tic predicted demand (EPD) repositioning strategy, which is most
prevalent in traditional taxi systems, produces 224.9% higher delays
than DemandProp. Most of the difference in delay can be explained
by the increase in detour time, which is 47.79 seconds on average for
DemandProp and 74.73 seconds for the APD repositioning strategy

Provoost et al.

Mo Tu We Th Fr Sa Su

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

W
ai

tin
g

tim
e

(m
in

.)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(a) Waiting time

Mo Tu We Th Fr Sa Su

1

2

3

4

D
et

ou
r

tim
e

(m
in

.)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(b) Detour time

Mo Tu We Th Fr Sa Su

60

65

70

75

80

85

90

O
n­

tim
e

pe
rf

or
m

an
ce

 (
%

)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(c) On-time performance

Mo Tu We Th Fr Sa Su

0.5

0.6

0.7

0.8

0.9

1.0

N
um

be
r

of
 c

us
to

m
er

s
in

 v
eh

ic
le

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(d) Number of customers per vehicle

Mo Tu We Th Fr Sa Su

0.0

0.5

1.0

1.5

2.0
R

ej
ec

t r
at

e
(%

)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(e) Reject rate

Mo Tu We Th Fr Sa Su

35

40

45

50

55

60

65

E
m

pt
y

ve
hi

cl
e

ra
te

 (
%

)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(f) Empty vehicle rate

Figure 3: Performance of the repositioning strategies for N = 5000, aggregated by weekday

Repositioning method Delay (min.) On-time performance (%) Customers per vehicle Idle time Distance covered (km)
DemandProp 1.077 83.22 0.687 12 h. 34 min. 351.5
(B) Altruistic predicted demand 1.564 (+45.21%) 76.49 (-6.730%) 0.734 (+6.841%) 13 h. 19 min. (+45 min.) 315.9 (-10.12%)
(B) Altruistic observed demand 1.755 (+62.95%) 77.82 (-5.400%) 0.768 (+11.79%) 13 h. 48 min. (+74 min.) 320.3 (-8.876%)
(B) Egoistic predicted demand 3.499 (+224.9%) 68.14 (-15.08%) 0.814 (+18.49%) 13 h. 34 min. (+60 min.) 192.9 (-45.12%)
(B) Random 3.033 (+181.6%) 64.54 (-18.68%) 0.858 (+24.89%) 14 h. 5 min. (+91 min.) 387.2 (+10.16%)
(B) No repositioning 17.25 (+1501%) 50.60 (-32.62%) 1.343 (+95.49%) 13 h. 49 min. (+75 min.) 169.1 (-51.89%)

Table 1: Performance of the repositioning strategies for N = 5000

Vertex demand
model Edge load model

R2 0.8023 0.9111

MSE 0.1884 0.0639

MAE 0.2993 0.1663

Figure 4: Performance of prediction models on their respec-
tive test sets

- a 56.37% increase. This is also shown in the on-time performance:
with DemandProp, 83.22% of all simulated requests is served with
less than 5 minutes of delay, which is an increase of more than 5%
in comparison to the altruistic repositioning strategies and more
than 15% for the other baseline methods. Based on the number of
customers per vehicle, the DemandProp repositioning strategy also
yields a better spread of customers across the fleet and therefore
ensures a better comfort level for customers. When DemandProp

is used, 0.687 customers are on average carried by a single vehicle,
compared to the APD and AOD strategies where 6.841% and 11.79%
more customers are carried, respectively. When no repositioning
is performed, the number of carried customers is almost doubled.
This can be explained by a demand-supply mismatch (caused by the
fact that vehicles are not repositioned to high-demand areas) which
forces the vehicles in high-demand areas to pick up more passen-
gers to satisfy all remaining demand. Another explanation could
be that system-wide delays become higher (as visible in 1), caus-
ing vehicles to carry more passengers simultaneously. Altogether,
our simulations suggest that the DemandProp algorithm outper-
forms the baseline methods by a considerable margin with regard
to transport efficiency (in terms of delays and comfort experienced
by customers of the ridesharing service).

Whenwe consider resource efficiency, DemandProp outperforms
the baseline methods for three of the four metrics that were evalu-
ated. The reject rate (i.e. the percentage of requests that could not
be served by any vehicle) across the complete two-week simulation
period was just 0.38% for the DemandProp algorithm, while the

DemandProp: a scalable algorithm for real-time predictive positioning of fleets in dynamic ridesharing systems

baseline methods result in at least a doubling of the number of
request rejections: more specifically, the best-performing baseline
method (APD) yields a reject rate of 0.92% while no repositioning
results in the worst reject rate of 5.13%. Similarly, DemandProp
demonstrates a lower empty vehicle rate than any of the baseline
methods throughout the simulator runs. When DemandProp is
used, on average 41.89% of the vehicles is carrying no passengers.
This percentage increases by more than 10% for the egoistic reposi-
tioning method (EPD), which yields an empty vehicle rate of 52.80%.
A similar phenomenon can be observed with regard to the idle time.
If DemandProp repositioning is used, a vehicle spends on average
12 hours and 34 minutes per day without serving customers and
therefore not generating revenue. The baseline methods produce
at least 45 minutes and at most 91 minutes more idle time per day.
Ideally, we would like to decrease the idle time further, in pursuance
of higher resource-efficiency. However, idle times are largely de-
termined by the trade-off between fleet size and the magnitude of
demand throughout the network. Possible fleet size reductions will
be evaluated in more detail later in this section. In a real-world
situation the fleet size will always be dynamic, and less vehicles
will be operated at night which automatically leads to less idle time
for the entire fleet.

0 20 40 60 80 100
Empty vehicle rate (%)

30

40

50

60

70

80

90

100

O
n­

tim
e

pe
rf

or
m

an
ce

 (
%

)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random
No repositioning

Figure 5: On-time performance of repositioning algorithms
for increasing levels of vehicle utilization

In Figure 5, we can observe the performance and resilience of
the repositioning strategies in situations where high demand levels
occur. Hence, we plot the empty vehicle rate against the on-time
performance. We evaluate the ability of the repositioning strategy
to maintain high on-time performance even when most vehicles are
currently busy serving passengers. We argue that this approach can
demonstrate whether the repositioning algorithm has the capability
to proactively and altruistically route the vehicles along the paths
where many shareable trips are expected, with minimal overhead
as a consequence. From the graph it is evident that DemandProp
excels in situations where the empty vehicle rate is low (i.e. between
0% and 40%). As a matter of fact, the DemandProp repositioning is
the only evaluated method which yields an on-time performance
over 80% when only 10% of vehicles is empty (i.e. when 90% of the

vehicles is serving passengers). By comparison to the baseline meth-
ods, the simulated results therefore suggest that using DemandProp
to reposition the fleet allows the vehicles to serve demand with a
relatively small delay, even when there is little capacity remaining
in the fleet.

The only metric on which the DemandProp performs worse than
the baseline algorithms is the average daily distance covered. When
DemandProp is used to reposition the vehicles, a vehicle travels a
daily average of 351.5 kilometers. With the exception of the random
repositioning method, this is significantly more than the driving
distance when the baseline methods are applied. For instance, un-
der the egoistic repositioning method (EPD) the vehicles traverse
a daily average of 192.9 kilometers, which is a decrease of 45.12%
in comparison to DemandProp. For the more advanced baseline
methods APD and AOD, the differences are smaller (10.12% and
8.876%, respectively) but still substantial. A likely explanation for
these differences is that the DemandProp is able to evaluate and
act upon demand in a more fine-grained manner than the baseline
methods, and is therefore generating more advanced repositioning
paths for the vehicles. By proposing paths with a higher distance,
more (expected) demand can be covered by the available fleet. This
also explains why egoistic repositioning algorithm (EPD) results in
shorter repositioning paths: since the algorithm does not altruisti-
cally coordinate the demand-supply mismatch between different
vehicles, vehicles will often be repositioned towards the same loca-
tion. This makes the repositioning parts simple and relatively short,
but also results in higher residual demand throughout the network.
The extra driving distance causes higher overall fuel consumption,
and we could therefore argue that DemandProp is less resource-
efficient in this aspect than most of the baseline methods. However,
the results regarding reject rate, idle time and vehicle utilization
suggest that the benefits outweigh the potential overhead.

In another experiment, we assess the performance from the per-
spective of reducing the fleet size. By running the simulation with
different fleet sizes 𝑁 and recording the on-time performance and
reject rate, insights can be gained into the reductions that can be
made with DemandProp while still being able satisfy operational
criteria. In Figure 6, the results of this experiment can be observed.
Again, the no repositioning baseline is omitted from the graphs to
ensure interpretability and emphasize on the other baseline meth-
ods. From the graphs it becomes clear that there exists a non-linear
relationship between fleet size and the metrics under study: for both
on-time performance and reject rate, the performance improves
at a smaller rate as the fleet size grows. From the operator’s per-
spective, a trade-off should therefore be sought between the cost
of resources and the transport efficiency. The results show that
DemandProp outperforms the baseline methods for every fleet size,
both in on-time performance as well as reject rate. When Demand-
Prop repositioning is used, the previously mentioned criterium of
80% on-time performance is reached for a fleet-size of 4,500. For
the best-performing baseline methods APD and AOD, this level is
reached at a fleet size of approximately 5,500. Hence, when com-
pared to the most intelligent alternatives, DemandProp allows for
a fleet reduction of nearly 1,000 vehicles while maintaining the
same on-time performance. Looking at the reject rate, DemandProp
reaches the criterium of 1.0% at a fleet size of 4,500, while the APD
and AOD baselines reach that at a fleet size of 5,000. Therefore, in

Provoost et al.

4000 4500 5000 5500 6000
Fleet size

60

65

70

75

80

85
O

n­
tim

e
pe

rf
or

m
an

ce
 (

%
)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(a) On-time performance

4000 4500 5000 5500 6000
Fleet size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ej

ec
t r

at
e

(%
)

DemandProp
Altruistic predicted demand (APD)
Altruistic observed demand (AOD)
Egoistic predicted demand (EPD)
Random

(b) Reject rate

Figure 6: Performance under fleet size reduction (criteria marked using gray dashed line)

comparison to these baselines, DemandProp allows for a fleet reduc-
tion of nearly 500 vehicles while maintaining the same reject rate.
With some reservations, it is also possible to compare DemandProp
to other approaches proposed in related work. For instance, Vazifeh
et al. [23] demonstrate that a fleet size of 6,000 yields an on-time
performance of 85%, even though the authors define the on-time
performance using a maximum delay of six minutes instead of five.
Therefore, according to our definition, the on-time performance
of their proposed method would almost certainly be lower than
85%. Hence, we could argue that DemandProp performs better, serv-
ing 87.46% of the requests with a delay shorter than five minutes.
However, due to possible differences in the simulator environment,
vehicle dispatching and the parameters used, it is impracticable to
justify this claim with confidence.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have presented a predictive repositioning algo-
rithm for dynamic ridesharing services. This algorithm, which we
call DemandProp, relies on deep neural networks (DNNs) and a
stochastic model to optimally (re)position the fleet, with the aim
of maximizing cumulative expected demand served by all vehicles
while minimizing the distance travelled to serve those demands.
Our results show that our approach is scalable and is capable of
running in real-time on large-scale networks of more than 5,000
vehicles and 9,000 roads, representing the complete road network
of Manhattan, New York City. Our results on a real-world trip
request dataset demonstrate that DemandProp is able to deliver
fine-grained and precise decision-making at real-world scale level
of a ridesharing service. DemandProp outperforms all baseline
methods by a significant margin regarding transport and resource
efficiency. Compared to an egoistic repositioning strategy, which is
prevalent in traditional taxi systems, the on-time performance can
be increased by 15% and total customer delays can be reduced by
69%. The idle time of vehicles is reduced by at least 45 minutes per
day in comparison to baseline methods. Our results also demon-
strate that DemandProp is able to deliver high on-time performance
(>80%) even when there is little capacity remaining in the fleet (i.e.
less than 20% vehicles without passengers), in contrast to other
baseline methods. Furthermore, a performance evaluation under

different fleet sizes suggests that DemandProp enables operators to
reduce the fleet by more than 1,000 vehicles in order to reach the
same on-time performance as the most intelligent baseline method
(i.e. the altruistic and predictive one). Compared to the egoistic
repositioning strategy, the results even suggest that the fleet can
be reduced by more than 2,000 vehicles to maintain the same level
of on-time performance. When looking at the reject rate, the pos-
sible fleet size reductions are approximately 500 vehicles in order
to maintain the performance of the altruistic predictive baseline
strategy. It is therefore evident that DemandProp can provide con-
siderable benefits to the performance of a ridesharing service, both
from the operator’s and customer’s perspective.

In the future, we aim to study how the DemandProp algorithm
reacts to days with special demand patterns, such as holidays or
big events. Since the algorithm is driven by neural networks that
predict demand, it is likely that demand predictions will become
less accurate on such occasions. Hence, we aim to assess whether
DemandProp is able to handle such demand patterns better than
baseline models. Additionally, we aim to study if DemandProp is
able to handle a higher diversity of fleet size and seating capacities.
We are especially interested in the implications of large differences
in the number of seats (i.e. emphasizing on mixed-size fleets), and
whether DemandProp is able to structurally outperform the baseline
models in such scenarios. Lastly, we are interested in incorporat-
ing other constraints and objectives into our models, such as EV
charging and integration of depots and time windows, such that
DemandProp is able to optimize under a wide range of different
scenarios of which the importance is determined by the stakeholder.

REFERENCES
[1] About.com. 2007. New York Taxis – Getting Around New York City in a Taxi.

https://www.tripsavvy.com/new-york-city-taxis-4026457
[2] Niels A. H. Agatz, A. Erera, M. Savelsbergh, and Xing Wang. 2010. Sustainable

Passenger Transportation: Dynamic Ride-Sharing. Urban Economics & Regional
Studies eJournal (2010).

[3] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli,
and Daniela Rus. 2017. On-demand high-capacity ride-sharing via dy-
namic trip-vehicle assignment. Proceedings of the National Academy of
Sciences 114, 3 (2017), 462–467. https://doi.org/10.1073/pnas.1611675114
arXiv:https://www.pnas.org/content/114/3/462.full.pdf

[4] J. Alonso-Mora, A. Wallar, and D. Rus. 2017. Predictive routing for autonomous
mobility-on-demand systems with ride-sharing. In 2017 IEEE/RSJ International

https://www.tripsavvy.com/new-york-city-taxis-4026457
https://doi.org/10.1073/pnas.1611675114
https://arxiv.org/abs/https://www.pnas.org/content/114/3/462.full.pdf

DemandProp: a scalable algorithm for real-time predictive positioning of fleets in dynamic ridesharing systems

Conference on Intelligent Robots and Systems (IROS). 3583–3590. https://doi.org/
10.1109/IROS.2017.8206203

[5] Andrew Amey, John Attanucci, and Rabi Mishalani. 2011. Real-Time Ridesharing:
Opportunities and Challenges in Using Mobile Phone Technology to Improve
Rideshare Services. Transportation Research Record 2217, 1 (2011), 103–110.
https://doi.org/10.3141/2217-13 arXiv:https://doi.org/10.3141/2217-13

[6] Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. 2016. Dynamic Pricing
in Ridesharing Platforms. SIGecom Exch. 15, 1 (Sept. 2016), 65–70. https://doi.
org/10.1145/2994501.2994505

[7] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for Trip-Vehicle Assignment
in Ride-Sharing. In AAAI.

[8] Geoff Boeing. 2017. OSMnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks. Computers, Environment and Urban
Systems 65 (2017), 126 – 139. https://doi.org/10.1016/j.compenvurbsys.2017.05.
004

[9] Anton Braverman, J. G. Dai, Xin Liu, and Lei Ying. 2019. Empty-Car Routing in
Ridesharing Systems. Oper. Res. 67, 5 (Sept. 2019), 1437–1452. https://doi.org/10.
1287/opre.2018.1822

[10] George B. Dantzig. 1957. Discrete-Variable Extremum Problems. Oper-
ations Research 5, 2 (1957), 266–288. https://doi.org/10.1287/opre.5.2.266
arXiv:https://doi.org/10.1287/opre.5.2.266

[11] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novellani.
2014. The bike sharing rebalancing problem: Mathematical formulations and
benchmark instances. Omega 45 (2014), 7 – 19. https://doi.org/10.1016/j.omega.
2013.12.001

[12] Nandani Garg and Sayan Ranu. 2018. Route Recommendations for Idle Taxi
Drivers: Find Me the Shortest Route to a Customer!. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD ’18). Association for Computing Machinery, New York, NY, USA, 1425–1434.
https://doi.org/10.1145/3219819.3220055

[13] Jae Young Jung and Joseph Chow. 2019. Large-Scale Simulation-Based Evaluation
of Fleet Repositioning Strategies for Dynamic Rideshare in NewYork City. InWCX
SAE World Congress Experience. SAE International. https://doi.org/10.4271/2019-
01-0924

[14] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang. 2011. Hunting or
waiting? Discovering passenger-finding strategies from a large-scale real-world
taxi dataset. In 2011 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops). 63–68. https://doi.org/10.
1109/PERCOMW.2011.5766967

[15] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang, T. He, and
G. J. Pappas. 2016. Taxi Dispatch With Real-Time Sensing Data in Metropolitan
Areas: A Receding Horizon Control Approach. IEEE Transactions on Automation
Science and Engineering 13, 2 (2016), 463–478. https://doi.org/10.1109/TASE.2016.
2529580

[16] Martin Pouls, Anne Meyer, and Nitin Ahuja. 2020. Idle Vehicle Repositioning for
Dynamic Ride-Sharing. In ICCL.

[17] Jason W. Powell, Yan Huang, Favyen Bastani, and Minhe Ji. 2011. Towards
Reducing Taxicab Cruising Time Using Spatio-Temporal Profitability Maps. In
Advances in Spatial and Temporal Databases, Dieter Pfoser, Yufei Tao, Kyriakos
Mouratidis, Mario A. Nascimento, Mohamed Mokbel, Shashi Shekhar, and Yan
Huang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 242–260.

[18] Xinwu Qian, Wenbo Zhang, Satish V. Ukkusuri, and Chao Yang. 2017. Optimal
assignment and incentive design in the taxi group ride problem. Transportation
Research Part B: Methodological 103, C (2017), 208–226. https://doi.org/10.1016/j.
trb.2017.03.001

[19] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H.
Strogatz, and Carlo Ratti. 2014. Quantifying the benefits of vehicle pool-
ing with shareability networks. Proceedings of the National Academy of Sci-
ences 111, 37 (2014), 13290–13294. https://doi.org/10.1073/pnas.1403657111
arXiv:https://www.pnas.org/content/111/37/13290.full.pdf

[20] Hamid R. Sayarshad and Joseph Y.J. Chow. 2017. Non-myopic relocation of
idle mobility-on-demand vehicles as a dynamic location-allocation-queueing
problem. Transportation Research, Part E: Logistics and Transportation Review 106
(Oct. 2017), 60–77. https://doi.org/10.1016/j.tre.2017.08.003

[21] Andrea Simonetto, Julien Monteil, and Claudio Gambella. 2019. Real-time city-
scale ridesharing via linear assignment problems. Transportation Research Part C
Emerging Technologies 101 (02 2019), 208–232. https://doi.org/10.1016/j.trc.2019.
01.019

[22] New York City Taxi and Limousine Commission. 2016. Trip Record Data. https:
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[23] M. Vazifeh, P. Santi, G. Resta, S. Strogatz, and C. Ratti. 2018. Addressing the
minimum fleet problem in on-demand urban mobility. Nature 557 (05 2018).
https://doi.org/10.1038/s41586-018-0095-1

[24] Tai yu Ma, Joseph Y.J. Chow, and Saeid Rasulkhani. 2018. An integrated dynamic
ridesharing dispatch and idle vehicle repositioning strategy on a bimodal trans-
port network. In Proceedings of 7th Transport Research Arena TRA 2018, April
16-19, 2018, Vienna, Austria. https://doi.org/10.5281/zenodo.2155709

A TRIP MATCHING ALGORITHM

Algorithm 1: Trip matching
Input: Trip request dataset 𝑅, set of vertices𝑉 from graph𝐺
Output: Origin-destination mapping (𝑣𝑜 , 𝑣𝑑) for all 𝑟 ∈ 𝑅
Initialize trip requests 𝑅 from dataset;
for 𝑟 ∈ 𝑅 do

Get pickup coordinates (𝑥𝑜 , 𝑦𝑜);
Get dropoff coordinates (𝑥𝑑 , 𝑦𝑑);
Set 𝑣𝑜 = argmin𝑣∈𝑉 𝑑 ((𝑥𝑜 , 𝑦𝑜), 𝑣);
Set 𝑣𝑑 = argmin𝑣∈𝑉 𝑑 ((𝑥𝑑 , 𝑦𝑑), 𝑣);
Store origin-destination mapping (𝑣𝑜 , 𝑣𝑑);

end

https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.3141/2217-13
https://arxiv.org/abs/https://doi.org/10.3141/2217-13
https://doi.org/10.1145/2994501.2994505
https://doi.org/10.1145/2994501.2994505
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1287/opre.2018.1822
https://doi.org/10.1287/opre.2018.1822
https://doi.org/10.1287/opre.5.2.266
https://arxiv.org/abs/https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1145/3219819.3220055
https://doi.org/10.4271/2019-01-0924
https://doi.org/10.4271/2019-01-0924
https://doi.org/10.1109/PERCOMW.2011.5766967
https://doi.org/10.1109/PERCOMW.2011.5766967
https://doi.org/10.1109/TASE.2016.2529580
https://doi.org/10.1109/TASE.2016.2529580
https://doi.org/10.1016/j.trb.2017.03.001
https://doi.org/10.1016/j.trb.2017.03.001
https://doi.org/10.1073/pnas.1403657111
https://arxiv.org/abs/https://www.pnas.org/content/111/37/13290.full.pdf
https://doi.org/10.1016/j.tre.2017.08.003
https://doi.org/10.1016/j.trc.2019.01.019
https://doi.org/10.1016/j.trc.2019.01.019
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1038/s41586-018-0095-1
https://doi.org/10.5281/zenodo.2155709

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Overview
	3.2 Matching Trips to Vertices
	3.3 Computing Aggregated Edge Flows
	3.4 Predicting Vertex Demand and Edge Flow
	3.5 Repositioning of fleet

	4 Experimental setup
	4.1 Datasets and pre-processing
	4.2 Simulator
	4.3 Baseline methods
	4.4 Experimental design

	5 Results and discussion
	5.1 Model training and validation
	5.2 Simulation runs

	6 Conclusions and future work
	References
	A Trip Matching Algorithm

